(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
implies(not(x), y) → or(x, y)
implies(not(x), or(y, z)) → implies(y, or(x, z))
implies(x, or(y, z)) → or(y, implies(x, z))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
implies(not(x), y) → or(x, y)
implies(not(x), or(y, z)) → implies(y, or(x, z))
implies(x, or(y, z)) → or(y, implies(x, z))
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
implies(not(x), y) → or(x, y)
implies(not(x), or(y, z)) → implies(y, or(x, z))
implies(x, or(y, z)) → or(y, implies(x, z))
Types:
implies :: not → or → or
not :: not → not
or :: not → or → or
hole_or1_0 :: or
hole_not2_0 :: not
gen_or3_0 :: Nat → or
gen_not4_0 :: Nat → not
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
implies
(6) Obligation:
Innermost TRS:
Rules:
implies(
not(
x),
y) →
or(
x,
y)
implies(
not(
x),
or(
y,
z)) →
implies(
y,
or(
x,
z))
implies(
x,
or(
y,
z)) →
or(
y,
implies(
x,
z))
Types:
implies :: not → or → or
not :: not → not
or :: not → or → or
hole_or1_0 :: or
hole_not2_0 :: not
gen_or3_0 :: Nat → or
gen_not4_0 :: Nat → not
Generator Equations:
gen_or3_0(0) ⇔ hole_or1_0
gen_or3_0(+(x, 1)) ⇔ or(hole_not2_0, gen_or3_0(x))
gen_not4_0(0) ⇔ hole_not2_0
gen_not4_0(+(x, 1)) ⇔ not(gen_not4_0(x))
The following defined symbols remain to be analysed:
implies
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
implies(
gen_not4_0(
1),
gen_or3_0(
n6_0)) →
*5_0, rt ∈ Ω(n6
0)
Induction Base:
implies(gen_not4_0(1), gen_or3_0(0))
Induction Step:
implies(gen_not4_0(1), gen_or3_0(+(n6_0, 1))) →RΩ(1)
or(hole_not2_0, implies(gen_not4_0(1), gen_or3_0(n6_0))) →IH
or(hole_not2_0, *5_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
implies(
not(
x),
y) →
or(
x,
y)
implies(
not(
x),
or(
y,
z)) →
implies(
y,
or(
x,
z))
implies(
x,
or(
y,
z)) →
or(
y,
implies(
x,
z))
Types:
implies :: not → or → or
not :: not → not
or :: not → or → or
hole_or1_0 :: or
hole_not2_0 :: not
gen_or3_0 :: Nat → or
gen_not4_0 :: Nat → not
Lemmas:
implies(gen_not4_0(1), gen_or3_0(n6_0)) → *5_0, rt ∈ Ω(n60)
Generator Equations:
gen_or3_0(0) ⇔ hole_or1_0
gen_or3_0(+(x, 1)) ⇔ or(hole_not2_0, gen_or3_0(x))
gen_not4_0(0) ⇔ hole_not2_0
gen_not4_0(+(x, 1)) ⇔ not(gen_not4_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
implies(gen_not4_0(1), gen_or3_0(n6_0)) → *5_0, rt ∈ Ω(n60)
(11) BOUNDS(n^1, INF)
(12) Obligation:
Innermost TRS:
Rules:
implies(
not(
x),
y) →
or(
x,
y)
implies(
not(
x),
or(
y,
z)) →
implies(
y,
or(
x,
z))
implies(
x,
or(
y,
z)) →
or(
y,
implies(
x,
z))
Types:
implies :: not → or → or
not :: not → not
or :: not → or → or
hole_or1_0 :: or
hole_not2_0 :: not
gen_or3_0 :: Nat → or
gen_not4_0 :: Nat → not
Lemmas:
implies(gen_not4_0(1), gen_or3_0(n6_0)) → *5_0, rt ∈ Ω(n60)
Generator Equations:
gen_or3_0(0) ⇔ hole_or1_0
gen_or3_0(+(x, 1)) ⇔ or(hole_not2_0, gen_or3_0(x))
gen_not4_0(0) ⇔ hole_not2_0
gen_not4_0(+(x, 1)) ⇔ not(gen_not4_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
implies(gen_not4_0(1), gen_or3_0(n6_0)) → *5_0, rt ∈ Ω(n60)
(14) BOUNDS(n^1, INF)